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The gas flow through a porous heat-releasing medium is considered. It has been noted that account for the
temperature dependence of the gas viscosity strongly influences the solution: the gas flow rate markedly de-
creases and a stronger heating occurs. Analysis of the flow of a gas with a temperature-dependent viscosity
by the Sutherland formula has revealed two steady-state cooling regimes — stable and unstable ones. It has
been shown that the possibility of the steady-state regime is determined not only by the problem parameters
but by the initial conditions as well. The transient process from the state of rest in the absence of heat re-
lease to the state of the regime of induced filtration upon instantaneous switching-on of heat input is de-
scribed.

Problem Formulation. In simulating the gas flow through a porous heat-releasing medium, the gas viscosity
is usually assumed to be constant [1–4]. The present paper considers flows with a temperature-dependent gas viscosity
by the Sutherland formula. The investigated gas flow through a solid, porous, homogeneous, stationary medium in
which heat release occurs can arise under cooling of fuel elements. A similar model was proposed in [1] for describ-
ing the process of cooling the exploded unit of the Chernobyl NPP.

Suppose we have a fuel element of height H and a cold gas is conveyed under pressure into its lower part;
the gas flows up through a porous medium, is heated as a result of the heat exchange, and flows out into a free space
with a given pressure. The model is constructed on the assumption of two interacting continua [5]. Let us assume that
the heat release in the solid phase is directly proportional to the reactant concentration, whose decrease rate is directly
proportional to the concentration itself, and the volume and mass of the condensed phase change insignificantly and
these changes can be neglected. We assume that the intensity of the interphase heat exchange is proportional to the
phase-temperature difference at the considered point of the medium, for the gas the equation of state of a perfect gas
holds, and the condensed phase is stationary and uniform. The system of equations describing such a process is of the
following form:
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In investigating the nonisothermal filtration of a liquid, the dynamic viscosity, as a rule, is assumed to be
temperature-dependent [6]; however, in simulating the nonisothermal filtration of a gas, the viscosity is often assumed
to be constant. Further we will consider that the dynamic gas viscosity depends on temperature according to the Suth-
erland formula, and the heat conductivity of the gas is proportional to its viscosity:
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Tg

1.5
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Let us introduce the following designation: u = avg. From the last equation of system (1), find the expression
for the reactant concentration: C = exp (−k2t). The last term in the second equation of system (1) can be neglected,
since the heat conductivity of the gas is low. Thus, the system of equations describing the gas flow through the porous
heat-releasing medium will take on the following form:
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At the inlet into the porous element, the gas temperature and pressure are known, and at the outlet — the
pressure is known, since the gas flows out into an open space. The conditions for the heat exchange at the inlet and
outlet from the porous element are also known. Thus, the boundary conditions for system (2) have the form
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To solve system (2), it is also necessary to give the values of the sought quantities at the initial instant of time.
Consider now the steady-state and time-invariable process. In this case, the heat release in the solid phase is

constant. The inertial terms in the momentum conservation law can be neglected. Then the third equation of system
(2) transforms into the Darcy law. By simple manipulations, we get the system of equations describing the stationary
gas flow through the porous heat-releasing medium:
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Note that if the heat release in the solid phase is substantial, then the last term in the second equation of system (4)
can be neglected. Let us write the boundary conditions for system (4):
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Systems (2) and (4) are solved in the dedimensionalized form, but the dimensionless variables thereby are input in the
following way: x~ = x/H, t

~
 = t ⁄ t∗, and u~ = u ⁄ u∗, where t∗ and u∗ are the characteristic values of the time and filtration

rate of the gas; p~ = p ⁄ p∗, ρ~ = ρ ⁄ ρ∗, T
~

 = T ⁄ T∗, and T
~
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 ⁄ T∗; here p∗, ρ∗, and T∗ are the gas pressure, density,

and temperature under "normal" conditions.
Influence of the Temperature Dependence of the Gas Viscosity on the Solution. Further, unless otherwise

specified, we shall consider systems (2) and (4) with the following parameters:
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Solve system (4) with the boundary conditions obtained from (5) for the following values of the dimension-
less quantities:

p0 = 1.5 ,   Tg0 = 1 ,   ph = 1 . (7)

The system is solved as in [4]. Figure 1 shows the distributions of the condensed-phase temperature, the gas tempera-
ture, and the gas filtration rate over the element height. For comparison, the same figure gives the above distributions
for the case of a constant dynamic viscosity of the gas [4] at µ = 2⋅10−5 kg/(m⋅sec). The gas flow rate is equal to
1.1167 in the first case and 2.1465 in the second case. Since the gas viscosity is temperature-dependent, its mean
value turns out to be higher and, therefore, the total friction force increases, leading to a decrease in the gas velocity,
a marked decrease in the flow rate, and a stronger heating.

Figure 2 shows the dependences of the gas flow rate on its pressure at the inlet into the heat-releasing ele-
ment for the case of both variable gas viscosity (with various values of constants in the Sutherland formula) and con-
stant gas viscosity (with various values of viscosity). Computations have been performed for the boundary conditions
obtained from (5) for the following values of the dimensionless quantities:

Fig. 1. Distributions of the condensed-phase temperature (a), the gas tempera-
ture (b), and the gas filtration rate (c) over the element height.
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Tg0 = 1 ,   ph = 1 . (8)

As is seen from Fig. 2, with allowance for the temperature dependence of the gas viscosity, the critical value of the
gas pressure at the inlet into the heat-releasing element, below which the steady-state cooling regime does not exist, is
attained at a zero gas flow rate, unlike the flow of a constant-viscosity gas. From Fig. 2 it is also seen that in the
flow of a gas with a temperature-dependent viscosity two steady-state regimes of cooling exist: to one and the same
value of the gas pressure at the inlet into the element two values of the gas flow rate can correspond. To analyze the
stability of these regimes, system (2) with boundary conditions (3) was solved by the finite-difference method [7]
under the condition of constant pressure and temperature of the gas at the inlet into the element. It turned out that the
cooling regime corresponding to the lower flow rate of the gas at its given pressure at the inlet into the element is
unstable, whereas the steady-state regime corresponding to the higher flow rate of the gas at its given pressure at the
inlet into the element proved to be stable. From the unstable steady-state cooling regime the system either slowly goes
to the stable steady-state regime or is heated indefinitely. This is graphically demonstrated by Fig. 3, showing the
change in the gas flow rate with time. The choice of the system behavior in the unstable steady-state regime depends
on the slightest change in the gas pressure at the inlet into the element: if the pressure decreases insignificantly, then
indefinite heating occurs, and if it increases slightly, then the system goes to the stable steady-state regime. In nature,
pressure oscillation is caused by natural fluctuations of all quantities, and in numerical calculations they arise from the
ever-present calculation error.

The transition to the regime of indefinite heating at a gas pressure at the inlet above the critical value can be
explained as follows. At a fairly low gas flow rate, a considerable heating of the element in its upper part occurs. Be-
cause of the temperature dependence of viscosity, it can reach a value in the strongly heated region so large that the
increased friction force will markedly impede the gas flow and its rate will continue to decrease and, as a result, the
element will continue to be heated.

Thus, it has been shown that in simulating the gas flow through a porous heat-releasing medium, it is neces-
sary to take into account the temperature dependence of the gas viscosity.

Problem on Switching Induced-on Filtration at the Onset of Heat Release. Consider now the following
problem. Heat release in the solid phase before the initial instant of time is absent and the pressure at the inlet into
the element and at its outlet corresponds to atmospheric pressure at given heights; consequently, air motion in the ele-
ment is absent. At the initial instant of time, heat release in the solid phase begins and simultaneously the gas pressure
at the inlet into the element increases.

Fig. 2. Flow rate of the gas versus its pressure at the inlet into the element: 1)
µ = 2⋅10−5;  2) 2.5⋅10−5 kg/(m⋅sec) ; 3) µ = µ(T) ,  cs1 = 1.458⋅10−6

kg/(m⋅sec√K); cs2, 110.4 K (corresponds to parameters (6)); 4) µ = µ(T), cs1 =
1.15⋅10−6 kg/(m⋅sec√K); cs2,  110.4 K; 5) µ = µ(T) ,  cs1 = 1.458⋅10−6

kg/(m⋅sec√K); cs2, 10 K.

Fig. 3. Change in the gas flow rate on the system going from the unstable re-
gime of cooling to: 1) the steady-state regime; 2) indefinite heating.
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Let the problem parameters be defined according to (6). The pressure at the inlet into the element increases
linearly to 1.5 and then remains constant. Then the boundary conditions are obtained from (3) at the following values:

p0 = exp (gH ⁄ (RT∗Tg0)) + tB ,   if   exp (gH ⁄ (RT∗Tg0)) + tB < 1.5 ;

p0 = 1.5 ,   if   exp (gH ⁄ (RT∗Tg0)) + tB ≥ 1.5 ;

Tg0 = 1 ;   ph = 1 .

(9)

System (2) is solved by the finite-difference method as in [7]. In this case, transition to the steady-state re-
gime of cooling occurs, since at the given problem parameters and boundary conditions the steady-state regime of
cooling exists, as is seen from Fig. 2. And though the new regime will not be completely steady-state, since the heat
release in the solid phase slowly decreases, this decrease can often be neglected.

The transition to the steady state can be split into two stages. At the first stage there is a rapid and drastic
change in the gas pressure, density, and rates of filtration and flow. This change markedly slows down shortly after
the gas pressure at the inlet into the element settles at a constant value and the second stage of the transition to the
steady state begins: there occurs a slow heating of the element, causing a slow change in all the other quantities
sought. The new stationary solution is the asymptotics to which the system solution tends.

Consider in more detail the first stage of the transition to the steady state. Figure 4 shows the gas pressure at
the inlet into the element and the gas flow rate for two variants of the problem under considerations differing in the
rapidity of pressure increase at the initial instant of time. The upper branches of the gas flow rate graphs correspond
to the values at the inlet into the element, and the lower ones correspond to the outlet values. As is seen from Fig.
4, the inlet and outlet gas flow rates approximately equalize fairly rapidly — this instant of time is the termination of
the first stage of the transition to the steady state. The graph of the gas flow rate at the inlet into the element has a
clearly defined peak depending on the rapidity of the gas-pressure increase at the inlet into the element, which is no-
ticeable even at a rather slow gas pressure increase at the inlet.

Consider this problem now with other boundary conditions. Let the inlet pressure increase linearly to 1.4 and
upon reaching this value remain constant, the other boundary conditions being left without a change. Then the bound-
ary conditions are obtained from (3) at the following values:

p0 = exp (gH ⁄ (RT∗Tg0)) + tB ,   if   exp (gH ⁄ (RT∗Tg0)) + tB < 1.4 ;

p0 = 1.4 ,   if   exp (gH ⁄ (RT∗Tg0)) + tB ≥ 1.4 ;

Tg0 = 1 ;   ph = 1 .

(10)

Fig. 4. Gas pressure at the inlet into the element (a) and gas flow rate at the
inlet into the element (upper branches of the graph) and at the outlet from the
element (lower branches of the graph) (b): 1) B = 1; 2) 10.
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In this case, as is seen from Fig. 2, the steady-state regime of cooling does not exist. The system solution (2)
confirms this: there occurs indefinite heating which is bound to terminate in solid-phase melting and disturbance of the
above-described cooling process. However, this cooling process can also be split into two stages. The first stage is
analogous to the above first stage of transition to the steady state: there is also a rapid and drastic change in the gas
pressure, density, and rates of filtration and flow, which markedly slows down shortly after the inlet pressure settles at
a steady state. The second stage of heating differs from the above stage in that element heating lasts indefinitely. Fig-
ure 5 shows the change in the solid-medium temperature at the outlet from the fuel element for both cases of the
problem considered: transition to the steady state and indefinite heating.

Thus, if heat release in the solid phase begins simultaneously with the switching-on of air pumping at the
inlet into the element, then no catastrophe occurs at the initial instant of time. Depending on the air pressure that has
settled at a constant value at the inlet into the element, either the steady-state regime of cooling is realized or indefi-
nite heating of the element leading to condensed-phase melting and disturbance of the cooling process occurs. Heating
of the element to the melting temperature of the solid medium requires a rather long time, which will make it possible
to increase the air pressure at the inlet into the element to a value at which the cooling regime will reach the steady
state.

NOTATION

a, porosity; a∗, heat-transfer coefficient, J/(m2⋅K⋅sec); B, parameter defining the rate of increase in the gas
pressure at the inlet into the element at the initial instant of time; C, reactant concentration; cc, heat capacity of the
condensed phase, J/(kg⋅K); cp, heat capacity of gas at a constant pressure, J/(kg⋅K); cs1, constant in the Sutherland for-
mula, kg/(m⋅sec√K); cs2, constant in the Sutherland formula, K; g, gravitational acceleration, m/sec2; H, fuel-element
height, m; k1, permeability coefficient of the condensed phase, m2; k2, coefficient defining the decrease in the heat re-
lease, 1/sec; p, gas pressure, Pa; Pr, Prandtl number; q, gas flow rate, kg/(m2⋅sec); Q0, constant defining the rate of
heat release, J/(m3⋅sec); R, gas constant, m2/(sec2⋅K); t, time, sec; T, condensed-phase temperature, K; Tg, gas tempera-
ture, K; u, rate of gas filtration, m/sec; x, Euler coordinate, m; vg, gas velocity, m/sec; α, constant defining the inter-
phase heat-exchange intensity, J/(m3⋅K⋅sec); λ, heat conductivity of the condensed phase, J/(m⋅K⋅sec); λg, heat
conductivity of gas, J/(m⋅K⋅sec); µ, dynamic viscosity of gas, kg/(m⋅sec); ρc, condensed-phase density, kg/m3; ρ, gas
density, kg/m3; χm, factor of apparent mass taking into account the inertial interaction of phases in their accelerated
relative motion. Subscripts: c, condensed phase; g, gas; h, outlet from the element; m, mass; 0, values at the inlet into
the element.
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